This post documents the steps involved training a simple model to predict the price in Airbnb Barcelona listing, covering following section:

  • Data Exploring
  • Transformation
  • Training the model
  • Encode model and upload

The repository is here if you would like to check the code.

image source

Data Exploring

Airbnb data can be obtained from http://insideairbnb.com/get-the-data.html

Here we used the data from Dec 2019 for Barcelona, Spain. You can obtain a copy here

The original data in listings.csv.gz has over 100 columns, the final data frame used for price prediction only had 43 columns including ‘Price’ target. Many of them were dropped because they were mostly no value, or same value, or has high correlation with other columns.

Object Columns

Column Transformation
host_id none
host_response_time drop_rows_occurs_less_than(1) ->fillna_with_lowest_occurance ->dic_host_response_time
host_is_superhost encode_boolean_to_float ->fillna False
host_verifications extract_num_of_items_for_column
host_has_profile_pic encode_boolean_to_float ->fillna False
host_identity_verified encode_boolean_to_float ->fillna False
neighbourhood_group_cleansed drop_rows_occurs_less_than(1) ->encode_category_dic
is_location_exact encode_boolean_to_float
property_type encode_category_dic
room_type encode_category_dic
bed_type encode_category_dic
amenities extract_num_of_items_for_column
has_availability encode_boolean_to_float
instant_bookable encode_boolean_to_float
cancellation_policy drop_rows_occurs_less_than(2) -> encode_category_dic
require_guest_profile_picture encode_boolean_to_float
require_guest_phone_verification encode_boolean_to_float

Numeric Columns

All na were filled with mean

Column
host_response_rate
latitude
longitude
accommodates
bathrooms
bedrooms
beds
price
security_deposit
cleaning_fee
guests_included
extra_people
availability_365
number_of_reviews
review_scores_rating
review_scores_accuracy
review_scores_cleanliness
review_scores_checkin
review_scores_communication
review_scores_location
review_scores_value
calculated_host_listings_count
calculated_host_listings_count_entire_homes
calculated_host_listings_count_private_rooms
calculated_host_listings_count_shared_rooms
review_per_month

Folder structure

airbnb-ml
  |-- notebooks # experimental
  |-- models # exported models
  |-- src
    |-- transform.py
    |-- const.py
    |-- pipeline.py
    |-- app.py # flask app for price prediction
    |-- __init__.py # makes everything in src folder an package
    |-- tests
      |-- test_transform.py
  |-- Dockerfile # to dockerize prediction app
  |-- requirements.txt
  |-- requirements-dev.txt

Testing Framework

# requirements-dev.txt
nose==1.3.7
nose-watch==0.9.2
rednose==1.3.0

Transformation

def drop_rows_occurs_less_than(df, column_name, low_bound):
    counts = df[column_name].value_counts()
    to_remove = counts[counts <= low_bound].index
    new_df = df[~df[column_name].isin(to_remove)]
    return new_df

def fillna_with_lowest_occurance(df, column_name):
    df = df.fillna(
        value={column_name: df[column_name].value_counts().index[-1]})
    return df

def encode_boolean_to_float(df, column_name):
    df[column_name] = df[column_name].astype(float)
    return df

def extract_num_of_items_for_column(df, column_name):
    df[column_name] = df[column_name].apply(extract_num_of_items)
    return df

def extract_num_of_items(input):
    input = input.split(",")
    return len(input)

Transformation: Categorical Column

Some of the columns contain categorical data, instead of one-hot encoding, I wrote a function to label them

def encode_category_dic(dataframe):
    def h(dica, columnName):
        labels = dataframe[columnName].astype(
            'category').cat.categories.tolist()
        encode_dic = {columnName: {k: v for k, v in zip(
            labels, list(range(1, len(labels)+1)))}}
        return dict(dica, **encode_dic)
    return h

def foldleft(func, acc, xs):
    return functools.reduce(func, xs, acc)

# usage
category_columns = [
    "neighbourhood_group_cleansed",
    "property_type",
    "room_type",
    "bed_type",
    "cancellation_policy"
]

category_encoder = trans.encode_category_dic(airbnb)
category_dic = trans.foldleft(category_encoder, {}, category_columns)
airbnb = airbnb.replace(category_dic)

Training the model

Models like SVCRegressor, LinearRegression and DecisionTree produced very bad results. R2 score ranged from 0.09-0.12

In the end, RandomForestRegressor produced the best model, R2 score ~0.8

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor

y = airbnb["price"]
X = airbnb.drop(columns=['price'])
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
rnd_regr = RandomForestRegressor(
    min_samples_leaf=4,
    random_state=0,
    n_estimators=100)
rnd_regr.fit(x_train, y_train)

Encode model and upload to S3

import s3fs

with s3.open('airbnb-barcelona/models/rnd_reg.price', 'wb') as f:
    joblib.dump(rnd_regr, f)